Prospective Study for Semantic Inter-Media Fusion in Content-Based Medical Image Retrieval
نویسندگان
چکیده
One important challenge in modern Content-Based Medical Image Retrieval (CBMIR) approaches is represented by the semantic gap, related to the complexity of the medical knowledge. Among the methods that are able to close this gap in CBMIR, the use of medical thesauri/ontologies has interesting perspectives due to the possibility of accessing on-line updated relevant webservices and to extract real-time medical semantic structured information. The CBMIR approach proposed in this paper uses the Unified Medical Language System’s (UMLS) Metathesaurus to perform a semantic indexing and fusion of medical media. This fusion operates before the query processing (retrieval) and works at an UMLS-compliant conceptual indexing level. Our purpose is to study various techniques related to semantic data alignment, preprocessing, fusion, clustering and retrieval, by evaluating the various techniques and highlighting future research directions. The alignment and the preprocessing are based on partial text/image retrieval feedback and on the data structure. We analyze various probabilistic, fuzzy and evidence-based approaches for the fusion process and different similarity functions for the retrieval process. All the proposed methods are evaluated on the Cross Language Evaluation Forum’s (CLEF) medical image retrieval benchmark, by focusing also on a more homogeneous component medical image database: the Pathology Education Instructional Resource (PEIR).
منابع مشابه
Semiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملRecent Trend of Content Based Image Retrieval Using Intelligent Fusion Techniques
the goal of this paper is to present use of fusion techniques in content based image retrieval. this techniques improve semantic value of user queries. Hence, improve performance of content based image retrieval system. Basically, Images are expressed at different semantic levels. Content Based Image Retrieval is growing technologies for bridging the semantic gap that presently prevents deploym...
متن کاملA Semantic Fusion Approach Between Medical Images and Reports Using UMLS
One of the main challenges in content-based image retrieval still remains to bridge the gap between low-level features and semantic information. In this paper, we present our first results concerning a medical image retrieval approach using a semantic medical image and report indexing within a fusion framework, based on the Unified Medical Language System (UMLS) metathesaurus. We propose a stru...
متن کاملA Modified Grasshopper Optimization Algorithm Combined with CNN for Content Based Image Retrieval
Nowadays, with huge progress in digital imaging, new image processing methods are needed to manage digital images stored on disks. Image retrieval has been one of the most challengeable fields in digital image processing which means searching in a big database in order to represent similar images to the query image. Although many efficient researches have been performed for this topic so far, t...
متن کاملContent Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram
Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a database. In medical applications, CBIR is a tool used by physicians to compare the previous and current medical images associated with patients pathological conditions. As the volume of pictorial information stored in medical image databases is in progress, efficient image indexing and retri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0811.4717 شماره
صفحات -
تاریخ انتشار 2007